
Migration of Relational Database to Document-Oriented Database: Structure
Denormalization and Data Transformation

Girts Karnitis and Guntis Arnicans

Faculty of Computing
University of Latvia

Riga, Latvia
{girts.karnitis, guntis.arnicans}@lu.lv

Abstract — Relational databases remain the leading data
storage technology. Nevertheless, many companies want to
reduce operating expenses, to make scalable applications that
use cloud computing technologies. Use of NoSQL database is
one of the possible solutions, and it is forecasted that the
NoSQL market will be growing at a CAGR of approximately
50 percent over the next five years. The paper offers a solution
for quick data migration from a relational database into a
document-oriented database. We have created semi-
automatically two logical levels over physical data. Users can
refine generated logical data model and configure data
migration template for each needed document. Data migration
features are implemented into relational database browser
DigiBrowser. Real patients’ database was migrated to
Clasterpoint database. The offered approach provides means
to obtain at least proof-of-concept for new document-oriented
database solution in a couple of days.

Keywords - database migration; relational database; NoSQL;
document-oriented database; meta model; logical data
representation

I. INTRODUCTION

Relational databases (RDM) have been the leading data
storage technology for years. Nevertheless, changes in the
demands for the data processing have caused emergence of
new data storage, retrieval and processing mechanisms. One
of such mechanisms is a NoSQL (Not only SQL) database
that was introduced to label non-relational and distributed
data stores. To reduce operating expenses, managers of many
large companies are looking forward to the cloud computing
solutions. These solutions help to store data efficiently, to
compute the massive amount of data, to provide high
scalability, to ensure high performance and availability at
low costs. Relation databases are not appropriate for cloud
computing, but NoSQL databases are.

The market of NoSQL databases is still small but steady
growing. More and more companies are trying to exploit
NoSQL databases to improve business. The article [1]
describes one such example – company CARFAX that offers
online vehicle and valuation website. CARFAX has 13.6
billion records associated with 700 million vehicles, and it
was difficult to run a website that uses a relational database.
The company is now running a website that is based on
NoSQL database MongoDB (108 servers, 10.6 TBs of data,

1.5 billion vehicle documents, the new system works five
times faster than legacy one).

Various estimations exist about the future of NoSQL
databases market, but all predict a significant increase of
share. Company Research and Markets estimated the NoSQL
market will be growing at a CAGR of 53.09 percent over the
period 2013-2018 [2]. CAGR is an indicator that shows the
year-over-year growth rate of an investment over a specified
period. The company Allied Market Research forecast a
CAGR of 40.8% during 2014 – 2020 and the global NoSQL
market is expected to reach $4.2 billion by 2020 [3]. The
most significant segments of applications are data storage,
metadata storage, cache memory, distributed data depository,
e-commerce, mobile apps, web applications, data analytics,
social networking.

There are five types of NoSQL databases at present:
column, document, key-value, graph, multi-model. The most
important types for some next years are key-value stores and
document databases. We concentrate our attention on
document databases and call them document-oriented
databases (several notations exit – document database,
document-oriented database, document store). There is a
range of document-oriented databases, for instance,
MongoDB, Couchbase server, CouchDB, MarkLogic,
Cloudant, Cassandra, and Clusterpoint database.

Days and sometimes weeks must be spent to convert data
from RDB to NoSQL data for the first time. Nowadays many
companies want to test whether NoSQL based solution is
suited to their needs and allocate some resources to explore
technologies and create NoSQL based proof-of-concept.
Many resources must be allocated to create data conversion,
and no resources are left to create and test functionality.

The problem of migrating data from relational databases
to document-oriented databases is addressed in this paper.
The proposed technology or ideas can help companies to
migrate their legacy systems based on RDB to the document-
oriented database. We approbated our ideas by adding new
features into the relational database browser DigiBrowser
(http://digibrowser.com). At least companies can use the
DigiBrowser for fast creating of proof-of-concept before
starting the migration project.

The remainder of the paper is organized as follows.
Section 2 reveals data migration problem from legacy
relation database into a document-oriented database or other
NoSQL database. Related works are given. Section 3

7th International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN)

978-1-4673-7016-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CICSyN.2015.30

101

7th International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN)

978-1-4673-7016-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CICSyN.2015.30

101

7th International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN)

978-1-4673-7016-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CICSyN.2015.30

113

7th International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN)

978-1-4673-7016-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CICSyN.2015.30

113

7th International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN)

978-1-4673-7016-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CICSyN.2015.30

113

7th International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN)

978-1-4673-7016-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CICSyN.2015.30

113

7th International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN)

978-1-4673-7016-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CICSyN.2015.30

113

7th International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN)

978-1-4673-7016-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CICSyN.2015.30

113

7th International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN)

978-1-4673-7016-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CICSyN.2015.30

113

7th International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN)

978-1-4673-7016-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CICSyN.2015.30

113

explains our approach for data denormalization and creating
templates that define logical objects. Section 4 shows how
data is transformed according to created definitions. Results
of approbation are in Section 5. Finally, we give conclusions.

II. DATA MIGRATION PROBLEM AND SOLUTIONS

Data accumulated by information systems is one of the
important assets for most of the companies. Pushed by
customer demands and pulled by changes in technologies,
companies from time to time migrate from one information
system to another. Hence, data from the legacy system has to
be migrated to the new system. Despite the significance of
this process, knowledge about migration process is limited
[4]. F. Matthes and C. Schulz in [4] fixed a state of the art
and provided a literature review of the data migration
problem.

F. Matthes and C. Schulz define the term data migration
as follows: “Tool-supported one-time process which aims at
migrating formatted data from a source structure to a target
data structure whereas both structures differ on a conceptual
and/or physical level”.

Data migration has two important steps: first,
restructuring of source data according to requirements of the
target system, and second, transferring data from the source
to the target database. The academic literature offers several
approaches/methods for dealing with these steps: schema
conversion, meta-modeling approach, ETL (Extract,
Transform, Load), program conversion, model-driven
migration, automated data migration.

Theoretical research for RDB to XML/JSON
transformation was done when the XML format appeared,
but as stated in [5] conversion standard does not exist yet.
Two types of transformation approaches exist.

The first type of approaches creates XML document
without redundancy and preserving all constraints. All data
from RDB to XML is converted. In this approach at first
XML schema is generated from RDB, and then data is
translated. Main emphasis of authors of [6] is to preserve all
RDB constraints and avoid redundancies. Different models
are used to enrich semantic of the relational schema of an
existing database in the first step; data transformation using
the model created is in the second step. Authors of [7] use
the so-called Canonical Data Model (CDM). Authors of [8]
use extended entity relationship (EER) schema. Approaches
mentioned above generate very flat XML structure. Some
research is done to create nesting XML schemas, for
example [9].

The second type of approaches is a manual creation of
conversion mapping from the existing relational database to
the existing XML schema. Tools exist to map the relational
database to XML schema, for example, Altova XMLSpy.

Our approach is close to the meta-modelling approach
[10]. Data conversion from RDB to NoSQL consists of two
steps. The first step is to get the physical data structure from
the existing relational database and to raise the semantic
level of achieved data structure (creating of the so-called
meta-model). Conversion scope is also defined. The second

step is to convert data from the relational database to NoSQL
in compliance with the created data structures (meta-model)
and conversion scope.

We derived our solution from the experience of building
browsers for relational databases. Paper [11] contains a
description of basic ideas and implementation of the
browser.

The browser connects to database, reads its schema, and
creates data browsing model based on obtained metadata.
After that, the user can start data browsing. The user
perceives data as a graph. The tool provides the possibility to
traverse from one node (data item) to another and look at
related data at any moment. In order to get details of data or
to move to the other place, the user clicks on links similarly
to browsing web pages. The browser can be used by IT
specialists as well as by users without specific IT knowledge.
It is allowed to modify and customize browsing model. Thus,
after customization the tool is more like a simple information
system that allows to traverse throughout database, see
additional calculated information, and even change data [12].

III. DATA STRUCTURE DENORNMALIZATION

We use as an example a relational database schema
showed in Fig. 1.

A. Physical level of data
Let us consider that a university application stores data in

a relational database with the given data schema. Logical
objects (business concepts [4]) used in our example are
Course, Teacher, Student, Lecture, Examination, Grade,
Attendance. Data are with complex structure and tightly
connected. For instance, a Grade not only contains
information about the level of the grade, but also specifies
what student has received the grade of a particular course
and what teacher has granted the grade. The object Grade is a
complex object at the logical level. On the other hand, the
Grade is a table in the relational database that contains only
essential data of the object Grade. Developer defined views
might exist in the relational database. The view often is some
logical object that is formed from several physical tables and
can be used as part of the target document.

A part of relational database metadata used for data
conversion to NoSQL is shown in Fig. 2. A relation database
contains Table-like-structures: Tables and Views. The Table-
like-structure has a Name. Tables and Views do not differ
from the data translation perspective. The Table-like-
structure contains Attributes (columns). Each Attribute has a
Name and Data type. A Table has constraints. Primary Keys
(PK), Unique Keys (UK) and Foreign Keys (FK) are
essential for data translation because these constraints define
the relation between tables and records.

Data in a database is usually normalized; therefore, one
logical level object is stored in a bunch of related database
tables. A relational model is a low-level physical model. It
shows how data is stored but does not show the natural
relationship of data or full view of complex data objects.

102102114114114114114114114114

N:N type relations cannot be naturally defined in the
relational model. Instead, a specific table is created for each
relation. These tables are normal database tables with FK to
the related data tables. Sometimes additional information is
stored in such table. For instance, a teacher instructs courses
for known time periods. Tables Teacher, Course,
Course_Teacher contains all teaching facts (Teacher teaches
Course from Start_date till End_date). It is hard to tell

whether table Course_Teacher contains natural objects or
only relations between Teacher and Course. Thus, we cannot
automatically determine a semantic of distinct tables or
group of tables.

B. First Logical Level of Data
The logical level shows how we perceive data in logical

units or entities, but not how data is physically stored in a
database. ER models and modeling languages are used to
show logical data model. The main differences between
logical and physical data models are the following: in
logical data model the names of tables and attributes are
created in natural language; there are no specific codifier
tables, but codified values are included in the main data
objects; N:N relations are allowed; there are no surrogate
keys, each entity has a primary key that can be combined
from more than one attribute and can have attributes with
long data type, for example, text.

We supplement the physical model with additional
information. That allows us to show data at the logical level
and convert data into logical documents. The metamodel
containing information about physical and logical levels is
shown in Fig. 3. Let us consider that this model describes a
first logical level of data.

The Table-like-structure is the main object. That is
analogous to the Table-like-structure in physical model. The
Table-like-structure contains two types of attributes –
Physical attributes, which come from a database, and Virtual
attributes, which are calculated from other attributes in the
moment of data processing. The objects in the metamodel

Table

Table-like-
structure

Name

View

Attribute
Name
Type

Constraint
Name

FKPK_UK

PK UK

1..*1

*

1..*

*1

*1

Figure 2. Part of relational database metadata

Lecture
Lecture_ID
Room
Day
Time
Course_ID
Teacher_ID

Course
Course_ID
Name

Teacher
Teacher_ID
Name
Surname
Mentor

Examination
Examination_ID
Course_ID
Responsible_Teacher_ID
Date
Description

Course_Teacher
Course_ID
Teacher_ID
Start_date
End_date

Student
Student_ID
Name
Surname

Student_Course
Student_ID
Course_ID

Grade
Examination_ID
Student_ID
Grading_Teacher_ID
Grade

Attendance
Student_ID
Lecture_ID
Attendance

FK Course_ID
*

1 FK Course_ID
1

*

FK Teacher_ID
1

*

FK Lecture_ID 1

*

FK Course_ID
1

*

FK Grading_Teacher_ID
1

*

FK Student_ID
1

* FK Course_ID

1

*

FK Mentor_ID

0..1
*

FK Teacher_ID

1

*
FK Student_ID

*

1

FK Student_ID
1

*

FK Examination_ID
1

* FK Responsible_Teacher_ID

1

*

Figure 1. Physical data model of the example database

103103115115115115115115115115

have their physical names in the relational database (Name in
table), as well as logical name to be used during data
processing (Visible name). By default, all logical names are
the same as corresponding physical names until user change
them.

Relations (Link) link together the Table-like-structure
objects. Relations contain attributes that define which
attribute names must be equal in the related Table-like-
structures (like in FK-PK relationships). Physical relations
are defined in a database (Is_Virtual has value false); virtual
relations are additional relations defined only in the logical
model (Is_Virtual has value true). Both types of relations are
used for navigation. The relationship is used only for one
way navigation in each particular moment. Therefore, each
relationship can be perceived as two one-way relationships.
That allows us to define relations with any cardinality (1:1,
1:N, N:N).

The Table-like-structure class has four subclasses:
Codifier, Simple entity, Complex entity, N:N-link. Codifier
contains code, as well as coded data (there are no tables with
type Codifier in the example model; a sample is a table with
colors that contains fields id and color). A Simple entity
contains information about simple objects that are stored in
one table (for instance, Course and Student). A Complex
entity contains information about a complex object that is
stored logically in more than one table (for instance, Grade,
Lecture, Teacher, Attendance, and Examination). N:N-link
table is used to code N:N relationships in a relational
database (for instance, Course_Teacher, Student_Course).

The semi-automatic algorithm to determine Table-like-
structure type exists [13]. We use this algorithm to build
logical objects from tables in the relational database.

C. Second Logical Level of Data
The next step is obtaining a second logical level of data

for each target document. The Table-like-structure (TLS) is
taken as a basis for the document. Let us call this TLS as
tls_in_focus. First, we automatically create tree from Table-

like-structures that serves as a template draft for document
generation. Second, we refine the created tree by adding
additional Table-like-structures and removing excessive
Table-like-structures. At last, we choose what attributes are
excluded from the document (flag is_visible is set to false for
the chosen attributes).

Template draft can be generated by various algorithms. A
simple approach is demonstrated in Fig. 4. Let us choose the
TLS Grade as a tls_in_focus. We build a graph recursively
by adding as nodes TLSs that are on the opposite side of
links with cardinality 1 on the opposite side. First, Grade
adds Student, Teacher, and Examination. Second,
Examination adds Course and another instance of Teacher.

The described approach usually collects essential data of
the logical object. However, the target document may require
more data. For instance, a document based on Student can
require data about attended lectures and earned grades.
Algorithm in Fig. 5 describes another approach. The idea
behind algorithm dfs_selecting is traverse model graph by
principle to add TLS as tree nodes while a path from the root
to any leave contains unique TLS. This algorithm is a
combination of depth-first search in graph and backtracking
algorithm. Unfortunately, this approach usually adds too
many TLS that are weakly related to the tls_in_focus.

At time of writing this paper, we use the algorithm given
in Fig. 6. The idea is to exploit each link between TLSs not
more than one time, and TLS is visited (added) based on the
width-first graph search algorithm. Any link is allowed to be
used only in one direction.

We search for another tree building algorithms,

Table-like-
structure

Nam e in DB
Vis ible nam e

Codificator Simple entity Complex entity N:N-link

Physical
Attribute

Nam e in table
Vis ible nam e
Is vis ible

Link
Nam e
Is Virtual

Atribute Pairs in
Link

Virtual attribute
Nam e
Function

Attribute1..*

1

From 1 *

To 1 *

1..*

1

1 *

1 *

1..*

1

1..*

1

Figure 3. Part of logical model metadata

Examination
i Examination ID: 5000001
< Course ID: 30006
< Responsible Teacher ID: 2
 Date: 2008.04.07. 0:00:00
 Description: Home Work 1

Student
i Student ID: 100002
 Name: Zolnowski
 Surname: Paterson

Teacher

Teacher
i Teacher ID: 2001
 Name: John
 Surname: Kennedy
< Mentor ID: Null

Teacher
i Teacher ID: 2015
 Name: Anita
 Surname: Coleman
< Mentor ID: Null

Teacher
i Teacher ID: 2001
 Name: John
 Surname: Kennedy
< Mentor ID: Null

Teacher
i Teacher ID: 2015
 Name: Anita
 Surname: Coleman
< Mentor ID: Null

Course
i Course ID: 30006
 Name: Introduction to Algorit

Grade
< i Examination ID: 5000001
< Student ID: 100002
< Grading Teacher ID: 2001
 Grade: 10

FK Mentor ID FK Mentor ID

FK Student ID FK Examination ID

FK Grading Techer ID FK Responsible Techer ID
FK Course ID

Figure 4. Example how business concept Grade might be formed

dfs_selecting(parent_node, used_tls)
 used_tls.add(parent_node.tls)
 for each constraint of parent_node.tls
 related_tls = get_related_tls(parent_node.tls, constraint)
 child_node = create_tree_node(related_tls)
 parent_node.add_child(child_node)
 dfs_ selecting (child_node, used_tls)
 used_tls.remove(parent_node.tls)

// Sample of the function call
used_tls = create_list()
root_node = create_tree_node(tls_in_focus)
dfs_selecting(root_node, used_tls)

Figure 5. Algorithm dfs_selecting for a draft of document template

104104116116116116116116116116

particularly, by using TLS types Codifier, Simple entity,
Complex entity, N:N-link table.

The document template refining is performed manually
by experts. Templates can be created for any desirable
tls_in_focus. Many templates may be defined for each
tls_in_focus, for instance, with few related TLSs for
concentrated documents and with many related TLSs for
very detailed documents.

IV. DATA TRANSFORMATION

Data transformation and document generation are based
on the created template. Queries to the relational database are
executed. All queries are generated according to template
and metamodel transformations.

Final document structure and syntax depend on the target
document-oriented database. Various algorithms can be
created for desirable document format. As an example, we
offer a simple algorithm that exploits TLS types (Fig. 7).
Essential data are TLS names, attribute names and attribute
values (field values in a relational database). This
information is printed by command print. To show sublevel,
we print ‘{’ for sublevel start and ‘}’ for sublevel end.

Pseudo-command “for each link from parent_node to
child_node where child_node is child of parent_node” allows
to find such links between two TLS that correspond to the
document template, and to iterate through these links.

The given algorithm does not exploit link names (it is
possible to give a name to any link in the logical model).
Using link names can make the document more readable. For
instance, document Student can include Teacher data in
several roles: a person who reads a lecture, a person who is
responsible for an examination, and a person who grades the
examination.

V. RESULTS

We have implemented the ideas described in the paper
into tool DigiBrowser. Initially, DigiBrowser was designed
only for relation database browsing, and data migration to

NoSQL database is an additional feature. Actually, instead of
data browsing on the screen we write data to the file.

DigiBrowser can connect to any relational database
stored in Oracle Database, Microsoft SQL Server, MySQL,
PostgreSQL, and a browsing and traversing can be
performed immediately. It is possible to connect to Virtuoso
Universal Server (RDF data browsing) and XML file. For
more details see DigiBrowser homepage
(http://digibrowser.com).

Gints Ernsons, CEO of Clasterpoint Ltd
(www.clusterpoint.com) says: “We used Digibrowser to
denormalize a complex hospital IT system from legacy SQL
data containing 100 tables, 500 columns and 1 million
patients data into Clusterpoint XML database model creating
a single e-health record per patient in less than two days.
DigiBrowser works for us like a charm!”. The same data
migration was performed for MongoDB. Another data
formats supported by DigiBrowser are XML and JSON.
These formats allow migrating to a new system that supports
XML or JSON documents.

We have measured patients’ data conversation to XML
and JSON formats. The desktop computer used for
measurement has the following characteristics: Intel i7-4600
2.1Ghz, RAM 8GB, SSD disk 256GB SAMSUNG
MZ7TE256HMHP, MS Windows 8.1 64bit, MS SQL Server
2008 with patients’ database. The total number of patients
was 1.5 million. Total database size was 4.2GB. Document
extraction templates took data from 10.5 million rows. All
conversation lasted 100 minutes (approximately 15 thousand
documents per minute). Of course, document generation

bfs_selecting(root_node, used_links)
 queue = create_queue()
 queue.enqueue(root_node)

 while not queue.is_empty
 parent_node = queue.degueue()
 for each link of parent_node.tls
 related_tls = get_related_tls(parent_node.tls, link)
 if not used_links.find(link)
 used_links.add(link)
 child_node = create_tree_node(related_tls)
 parent_node.add_child(child_node)
 queue.enqueue(child_node)

// Sample of the function call
used_links = create_list()
root_node = create_tree_node(tls_in_focus)
bfs_selecting(root_node, used_links)

Figure 6. Algorithm bfs_selecting for a draft of document template

dfs_printing(record, parent_node)
 if not parent_node.type = "N:N-link"
 print parent_node.tls.visible_name
 if child_node.type = "Simple entity" or

child_node.type = "Complex entity"
 print "{"

 for each field of record
 if field.is_constraint
 for each link from parent_node to child_node

where child_node is child of parent_node
 if field.is_visible
 print field.name, field.value
 related_records = get_related_records(record, link)
 for each related_record of related_records
 dfs_printing(related_record, child_node)
 else
 if field.is_visible
 print field.name, field.value

 if child_node.type = "Simple entity" or

child_node.type = "Complex entity"
 print "}"

// Sample of the function call
dfs_printing(record_in_focus, root_node)

Figure 7. Sample algorithm for document creation

105105117117117117117117117117

speed depends on database structure, size and document
template.

A screenshot of medical data migration is shown in
Fig. 8. The left part contains document template tree. The
right part contains corresponding logical model. The blue
rectangle is a tls_in_focus, and green rectangles are other
TLSs that belong to the document.

VI. CONCLUSIONS

The offered data migration from a relational database
into the document-oriented database can be used in practice.
We included data conversion features into relational database
browsing tool DigiBrowser. Developers of document-
oriented database Clusterpoint approbated DigiBrowser and
converted legacy patients’ database to 1.5 million patients’
documents in a couple of days. IT specialists were not
familiar with the given database and were forced to explore
the database by DigiBrowser before creating the logical data
model and defining of converting templates.

If the relational database is not huge, it is possible make
migration of the relational database on a daily basis. NoSQL
database can provide additional services for the legacy
system such as better information searching and presentation.

Further studies have to be done to improve given
methods. Various new algorithms might be created for
recognizing table types, defining document structure,
choosing fields for migration, and forming target documents.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the research project “Information and Communication
Technology Competence Center” of EU Structural funds,
contract nr. L-KC-11-0003 signed between ICT Competence
Centre and Investment and Development Agency of Latvia,
Research No. 1.8 "Technology for denormalisation of
relational data bases"

REFERENCES

[1] B. Butler, “The NoSQL database market is a small but increasingly
important segment of the database market, and it’s giving SQL
database vendors and users a scare”, Network World, Oct 27, 1014,
http://www.networkworld.com/article/2839141/cloud-
computing/nosql-takes-the-database-market-by-storm.html

[2] Research and Market, “Global NoSQL Market 2014-2018”, Report
ID 2776270, Mach 2014,
http://www.researchandmarkets.com/reports/2776270/global_nosql_
market_20142018

[3] Allied Market Research, “Global NoSQL Market (Type, Application,
Verticals and Geography) Size, Global Trends, Company Profiles,
Demand, Insights, Analysis, Research, Report, Opportunities,
Segmentation and Forecast, 2013 - 2020”, Report, April 2015,
http://www.alliedmarketresearch.com/NoSQL-market

[4] F. Matthes and C. Schulz, “Towards an integrated data migration
process model”, Software Engineering for Business Information
Systems (sebis), 2011.

[5] B. Mohamed and A. Elalami, "The migration of data from a relational
database (RDB) to an object relational (ORDB) database", Journal of
Theoretical and Applied Information Technology, 20th December
2013. Vol. 58 No.2 ISSN: 1992-8645 ,E-ISSN: 1817-3195.

[6] P. Paolo and E. Quintarelli, "An algorithm for generating XML
Schemas from ER Schemas." In Proceedings of the Thirteenth Italian
Symposium on Advanced Database Systems, SEBD, 2005, pp. 192-
199.

[7] M. Abdelsalam, A. Ali, and N. Rossiter, "An integrated approach to
relational database migration”, In the Proceeding of International
Conference on Information and Communication Technologies-2008
(IC-ICT'08), pages 01-06, Bannu, Pakistan (2008).

[8] F., Joseph, et al. "Translating relational schema with constraints into
XML schema." International Journal of Software Engineering and
Knowledge Engineering 16.02, 2006, pp. 201-243.

[9] D. Lee, M. Mani, F. Chiu, and W. Chu, „NeT & CoT: translating
relational schemas to XML schemas using semantic constraints, in:
Proceedings of the 11th CIKM, 2002, pp. 282-291.

[10] M. Jeusfeld, and U. Johnen, "An executable meta model for re-
engineering database schemas", (P.Loucopoulos, Ed.) International
Journal on Cooperative Information Systems, 4(2-3), 1995, pp. 473-
483, Springer Berlin Heidelberg.

[11] G. Arnicans, G. Karnitis, “Prototype for Traversing and Browsing
Related Data in a Relation Database,” in: Barzdins (ed.), Scientific
Papers University of Latvia, Vol 756, Computer Science and
Information Technologies, University of Latvia, 2010, 59-74.

[12] G. Arnicans, G. Karnitis, “DigiBrowser: Tool for Relational Data
Browsing and Traversing,”, 2012, unpublished,
http://digibrowser.com/download.php?id=DIGIBrowser_ToolForRela
tionaDataBrowsingAndTraversing&page=documentation

[13] G. Arnicans, “Application generation for the simple database browser
based on the ER diagram,” in Janis Barzdins, editor, Databases and
Information Systems, Proceedings of the Third International Baltic
Workshop, Volume 1, pages 198-209. Riga, 1998.

Figure 8. Source data model for patient’s document

106106118118118118118118118118

